
Memory Bandwidth of the
Power2 Architecture

King Lee 1

Report RND-94-013 September 1994

NAS Systems Division

NASA Ames Research Center, Mail Stop 258-6

Moffett Field, CA 94035 - 1000

August 8, 1994

1The mailing address for Lee is Computer Science Dept., California State University,
Bakersfield, CA 93309. His e-mail address is klee@nas.nasa.gov.

Memory Bandwidth of the

POWER2 Architecture

Abstract

The POWER2 is a new implementation of the POWER architec-

ture that has peak performance and memory bandwidth comparable

to a single processor Cray YMP. This report examines several loops

that were chosen primarily to investigate the memory system. A in-

dication of the effective memory performance can give grounds for

predicting the performance of different codes. This report presents

measurements of memory bandwidth under different conditions and

makes suggestions on how the compiler might make further optimiza-
tions.

1 Introduction

The rapid improvement in microprocessor technology has promised a cost ef-

fective way to solve scientific problems. Until recently, the floating point per-

formance of RISC microprocessors was disappointing when applied to large

scientific problems. For example, the Intel i860 TM microprocessor achieved

only about 10 million floating point operations (MFLOPS) out of a theo-

retical peak performance of 60 MFLOPS on a DAXPY when the operands

were not in cache [3]. On many codes the limitation on performance is mem-

ory bandwidth. The POWER2 , a second generation implementation in the

the RS6000 architecture, significantly improved floating point performance

and memory bandwidth so that it can effectively handle problems that were

previously solved only by supercomputers.

The POWER2 has two versions; a high performance version and a lower

cost version. This report is concerned with the high performance version on

an IBM 590 workstation. The high performance POWER2 has a 256K 4-way

set associative data cache with 256 byte (32 double precision word) lines. The

low cost design has a 128K 4-way set associative cache and a line size of 128

bytes. The POWER2 has a 4K page size. To speed up paging translation,

the CPU contains a 512-entry two-way set-associative translation lookaside

buffer (TLB). Some of the more important features of the high performance

POWER2 version that contribute to the high floating point performance are:

The ability to dispatchtwo fixed point and two floating point instruc-
tions every clock. Each floating point instruction can perform two
floating point operations, so it is possibleto executefour floating op-
erationseachclock.

Quadload and quadstoreinstructions that load or store two adjacent
doubleprecisionregisters.The ability to load twooperandsin oneclock
is important for vector operations. For example, the DAXPY loop
requires3 memory referencesfor every two floating point operations.
Without the quadloadinstruction, wewould require3 clocks to load or
store the operands.With the quadloadand quadstoreinstructions, we
require an averageof 1.5clocksto load and store the operands.

• The ability of the memory system to have two pending operations [5]

This will help hide some of the latency when loading a line of cache.

• A 32 byte wide bus that can deliver 32 bytes every clock.

With a clock of 67.5 MHz, the peak performance is 270 MFLOPS. The

maximum bandwidth between memory and the CPU is over 250 million words

per second (MWDS) or 2 billion bytes per second (GBS). A single processor

of the Cray Y-MP had a peak performance of 330 MFLOPS and a memory

bandwidth of (assuming 3 ports to memory) of 480 MWDS. The high per-

formance does not come cheaply. The POWER2 implementation is a 6 chip

set, with a total of 23 million transistors. Most of the current single chip

microprocessors have fewer than 5 million transistors.

2 Performance of Memory Loads and Stores

This section presents some performance measurements of the POWER2 mi-

croprocessor. The loops were compiled with the highest level of optimization

on version 3.01 of the FORTRAN compiler. The flags used were

-O3 -qhot -qarch=pwr2 -qtune.

Timing measurements were made during the day when there were other users

on the system. In order to disregard the effects of other users, each loop

was timed 200 times. The minimum time was used to compute the perfor-

mance. The timing of each iteration of the loops generally ranged from 15

microseconds to 40 microseconds and the resolution of the clock was about

1 microsecond. Therefore the uncertainty due to the resolution is about 3 to

6 per cent or more depending on the time of the loop. Measurements were

made over a number of lengths and the reported measurements are reported

for length vector length 2000. This was a large enough vector length to reach

asymptotic performance and still stay in cache at stride 16. The vectors were

placed in common to align them on quadword boundaries. No two vectors
would have their first element on the same cache line.

The first series of loops are intended to measure memory bandwidth of

loads from cache and memory. We tried to use a "do nothing" loop to

measure performance, but the optimizing compiler gave erratic results. The

first loop was essentially:

100

do 100i= 1, n

s = s + x(i)
LooP 1

To measure the performance of cache loads, the cache was loaded with the

vector x before performance was measured. To measure the performance of

memory loads, the cache was loaded with a scratch vector before performance

was measured. The theoretical peak performance of this loop is 136 MFLOPS

and was limited by the floating point operations.

Initial measurements of LooP i were disappointing even though an exam-

ination of the assembler listing showed that the loop was unrolled. Manually

unrolling the loop improved performance dramatically. The reason is that

manually unrolling the loop caused more registers to be used to accumulate

sums. The assembler list showed that quadloads were used. When a quad-

load instruction is executed with unaligned operands, the tag directory may

have to be accessed twice if the quadload crosses a cache line. The double

access may cause a stall. Therefore tests were performed to see if alignment

would affect performance. The results are given in TABLE 1.

3

Vector Sum (MFLOPS)

Unit Stride

Aligned

Cache Load

Mem Load

Unaligned

Cache Load

Mere Load

Depth of Unrolling

1 2 3 4 5 6 7

31.7 59.9 80.3 107.5 111.1 134.1 131.1

32.0 58.5 64.0 77.0 75.2 78.4 75.2

31.7 59.9 80.3 107.5 lll.1 123.4 131.1

31.9 56.7 61.5 75.9 74.6 73.3 76.3

8

131.1

78.4

131.1

77.0

TABLE 1

Each FLOP requires a memory reference of 8 bytes. The best memory

performance was over 1 GBS when data was in cache and the loop was man-

ually unrolled 8 times. When the data was in memory the best performance

was over 600 MBS. On a cache miss there is 15 to 20 clock latency [1] before

data appears in cache. After the latency, the cache line should be filled in

8 clocks. Assuming a latency of 15 clocks and a cache fill time of 8 clocks,

the time it takes to fill a 256 byte line would be 23 clocks, or 700 MBS,

which is consistent with what we measured. The peak performance to load

from memory may be higher if we can overlap some of the latency of two
back-to-back cache loads.

Manually unrolling this loop can improve performance by a factor of

4 when data is in cache, and a factor of 2 when'data is in memory. An

examination of the assembler listing of LooP 1 and the manually unrolled

loops showed that the latter cases used more registers to hold intermediate

values. Evidently stalls were introduced when one or two registers were used

to accumulate the sum. The performance for this loop, designed to measure

memory performance, may have been limited by floating point operations.

We note that the difference between aligned and unaligned data was relatively

small in this case.

Next we considered the case when we had arbitrary stride incx. The loops

are equivalent to the following code fragment for the unrolled loop:

4

do 100 i= 1, 1-I-(n-1)* incx,incx

100 s = s + x(i)

LooP 2

When stride is not one, then there is no need to use the quadload instruction.

If the compiler does not know the stride at compile time, as is the case

when the stride is variable, the compiler generates doubleload instructions.

The instruction set allows us to load a word and update a pointer with

one instruction so that each fixed point unit should be able to issue a load

every clock. Therefore, the POWER2 should be able to issue a doubleload

instruction every clock. First, the loop was run when we forced the vector

to be in cache. The results are given in TABLE 2.

Vector Sum (MFLOPS)

Variable Stride - Cache Loads

Stride Depth of Unrolling

1 2 3 4 5 6 7 8

1 31.6 59.1 77.7 84.7 101.1 96.4 111.1 104.9

2 31.6 59.1 77.7 85.2 101.1 95.9 lll.1 104.9

4 31.6 59.1 77.3 84.7 101.1 97.0 111.1 104.9

8 31.6 59.1 77.7 84.7 101.1 95.9 111.1 104.9

16 31.1 56.1 68.8 68.2 85.6 81.8 91.2.2 90.6

TABLE 2

The maximum performance is still over 800 MBS at stride 1, a 20 percent

decrease in performance compared to TABLE 1. The reason for the decrease

is because for variable stride we are using doubleload loads instead of quad-

load loads. The results of the last row (stride 16) are rather puzzling. The

slight decreases in performance seem indicative of some cache misses. How-

ever, with a vector length 2000 and a stride of 16, there should be no cache

misses. Further investigation showed that there was the slight performance

degradation when the product of the stride and vector length was about

28000.

We next investigated the performance when the operands are from mem-

ory. Before the load was performed, the cache was filled with a scratch vector,

forcing operands from LooP 2 to come from memory. The results are given
in TABLE 3.

Vector Sum (MFLOPS)

Variable Stride- Memory Loads

Stride

1

2

4

8

16

32

64

1 2 3

31.7 51.9 59.1

31.4 45.7 44.7

23.8 23.8 23.7

12.4 13.1 13.3

6.8 6.8 6.8

3.4 3.4 3.4

3.5 3.5 3.5

Depth of Unrolling

4 5 6

63.8 65.3 62.6

45.0 45.8 45.5

23.8 23.0 23.3

12.4 12.7 12.2

6.8 6.8 6.8

3.4 3.4 3.4

3.5 3.5 3.5

7 8

64.8 66.8

43.8 45.7

23.3 23.7

12.7 12.4

6.8 6.8

3.4 3.4

3.5 3.5

TABLE 3

The performance varied from over 520 MBS to 27 MBS depending on

the stride. When we have variable stride (using doubleloads), there is a

15 percent degradation in performance compared to the case of unit stride

(using quadloads) as can be seen by comparing the first row of TABLE 3 and

the second row of TABLE 1. We expect the performance to be cut in half if

we double the stride until we get to a stride of 32. At stride 2 we load a line

of cache on every miss, but we use half of the data that we load. At stride 4

we also load a line of cache on every miss, but we use one fourth of the words

loaded. At stride 32 and larger we use only one of the 32 words of data that

we load on each cache miss. The difference in performance between the best

case (600 MBS using quadloads) and the worst case (28 MBS for stride 32)

is large. This is due to the relatively large latency, large line size, and high
bandwidth.

At stride 32 the time to perform an operation should be very close to the

time to load a line of cache. From the performance for stride 32 we infer

that the time to load a cache line is about 20 clocks which would work out

to about 800 MBS effective bandwidth from memory.

6

A second series of loops was designed to measure the performance of

storing data. The first loop is given in LooP 3 and does not involve any

floating point operations.

do 100i=1, n

100 x(i)=l.0

LooP 3

The results are given in TABLE 4.

Stores (Words/Sec)
Unit Stride

Aligned

Cache Store

Mem Store

Unaligned

Cache Store

Mem Store

Depth of Unrolling

1 2 3 4 5 6 7 8

162.9 161.3 162.9 166.1 159.8 162.9 156.8 164.5

86.9 84.3 85.1 83.5 83.1 85.2 82.6 83.9

137.5 137.5 116.8 139.8 135.3 137.5 132.1 129.8

78.0 77.7 75.6 79.9 77.7 78.0 75.2 79.9

TABLE 4

The performance of storing data is over 1.3 GBS into cache and 670 MBS

into memory. The difference in performance between aligned and unaligned

stores varies from 20 per cent when data is in cache to 5 per cent when

data is not in cache. In this, and in the subsequent loops, unrolling loops

did not always give significantly better performance. This is consistent with

the conjecture for LooP 1 that the necessity for unrolling was due to stalls

caused by data dependencies on the registers. For the sake of brevity, data

for unrolled loops are omitted.
We next considered the case where we allowed for non unit stride.

100
do 100 i = 1, l+(n-1) * incx,incx

x(i)= 1.0

LooP 4

First we tested the storesinto cache;the cachewas loadedwith the vector
x before the aboveloop wasexecuted. We expect that performancewould
decreasebecausewe cannot use the quadstoreinstruction. The results are
given in TABLE 5.

Stores(Words/Sec)
Non-unit Stride to Cache

Stride

1
2
4
8
16

Depth of Unrolling

1 2 3 4 5 6 7 8

80.3 79.5 77.7 79.5 78.4 77.7 77.0 79.5

80.3 79.5 77.7 79.5 78.4 77.7 77.0 79.5

80.3 79.5 77.7 79.5 78.4 77.7 77.0 79.5

80.7 79.5 77.7 79.5 78.4 77.7 77.0 79.5

70.8 70.8 68.8 70.5 70.5 68.8 67.7 70.5

TABLE 5

For stores into cache we can get 640 MBS and performance is not sig-

nificantly affected by stride or manually unrolling the loop. Note that the

performance with unit stride is about half that when we can use the quadstore

instruction as in TABLE 4. One must have instructions like the quadstore to

take advantage of the wide data paths.

Next, the cache was loaded with a scratch vector before the LooP 4

was executed. The results are given in TABLE 6. The memory system

has 8 memory banks and the measurements at various strides showed that

performance was not adversely affected with power of 2 strides.

Stores(Words/Sec)
Non-unit Stride to Memory

Stride

1
2
4
8
16
32
64

Depth of Unrolling

1 2 3 4 5 6 7 8

55.8 54.6 54.3 54.3 54.3 54.3 53.6 54.6
42.0 40.3 39.9 41.8 41.8 40.1 41.4 42.0
23.8 23.8 23.7 23.8 23.8 23.8 23.7 23.8
12.5 12.4 12.4 12.4 12.4 12.4 12.4 12.4
6.9 6.9 6.8 6.9 6.9 6.9 6.9 6.9
2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3

TABLE 6

The performanceof storesto memoryvaried from 420MBS to 20 MBS,
dependingon stride. At stride 1 wehaveabout 35 percent decreasein per-
formancefrom using quadstores(seesecondrow of TABLE 4). Again there
is a very wide differencewide rangein performancebetweenthe best caseof
stride 1 and the worst caseof stride 32.

3 DCOPY and DAXPY Routines

In this section we present the performance of some slightly more complex

loops. We start with the DCOPY loop which copies one vector to another. As

before, we consider the case where the quadload and quadstore instructions
can be used.

100

dolOOi= l,n

y(i)=x(i)

LooP 5

As in the previous section the vector lengths in all cases were 2000. The

vectors were aligned so that their first elements of the respective vectors

would not occupy the same cache line. Measurements were also made with

the loops manually unrolled. Generally the manually unrolled loops did not

9

improveperformance.This shouldbeexpectedbecausethere areno floating
point operations and therefore there is lesschanceof register conflicts. For
the sakeof brevity, the measurementsfor the unrolled loopsare omitted.

FORTRAN DCOPY (Words Copiedper Second)
Unit Stride

Both vectors in cache
Sourcevector in cache
Target vector in cache
Both vectors in memory

Both
Aligned

119.0
45.8
70.8
45.0

Source
Aligned

99.9
43.7
66.8
44.1

Target
Aligned

108.9
42.9
63.1
42.4

Neither
Aligned

99.9
41.6
62.6
41.5

TABLE 7

Each word copied requiresa load and a store and is counted asmoving
2 double precision words (16 bytes). Thereforethe performancevariesfrom
over 1.9 GBSwhen both vectorsare in cache,to 540 MBS when the vectors
are in memory. The differencesin performancebetweenhavingboth vectors
alignedand both unalignedvary from 5 to 20 percent.

We next considerthe caseof variable stride for LooP 6.

j=l
k=l
dolOOi= l,n

y(k)=x(j)

k = k + incy

100 j =j +incx

LooP 6

In this loop we do not expect that the alignment would make a difference

since quadload instructions are not generated.

10

FORTRAN DCOPY (Words Copiedper Second)
Variable Stride

Both vectors in cache
Sourcevector in cache
Target vector in cache
Neither vectorsin cache

incx = 1

incy ---1

64.3

34.5

43.4

32.7

incx = 4

incy = 4

63.3

12.8

22.6

12.8

incx = 8

incy = 8

53.6

7.0

8.3

6.8

incx = 16

incy = 16

na

2.6

2.9

2.6

incx = 32

incy = 32

na

na

na

1.3

na: vector does not fit in cache for these strides

TABLE 8

The performance ranged from 1 GBS with unit stride, to 20 MBS when
we had the worst case stride of 32. When data is in cache and the stride

is 1 the performance using quadloads and quadstores (TABLE 7) is almost

double that of using doubleloads and doublestores. Again, this points to the

importance of the quadload and quadstore instruction.

The DCOPY routine is available in the ESSL library. We measured the

performance of library routine by replacing Loop 6 with a call to the ESSL

library DCOPY. The results are given in TABLE 9.

ESSL DCOPY(Words Copied per Second)

incx= 1 incx=4 incx=8 incx= 16 incx= 32

incy= 1 incy=4 incy=8 incy= 16 incy=32

Both vectors in cache

Source vector in cache

Target vector in cache

Neither vector in cache

128.1

45.2

69.3

45.8

33.0

11.8

19.7

12.2

31.4

6.7

8.0

6.6

na

2.3

2.9

2.6

na

na

na

1.2

na: vector does not fit in cache for these strides

TABLE 9

The performance varies from 2 GBS (stride 1 in cache) to 20 MBS (stride

32 in memory). The first column of TABLE 9 is similar to the first column of

11

TABLE 7, leadingusto conjecturethat DCOPY wascodedusingquadloads
and quadstores.However,the first row of TABLE 9 is significantly less than

the first row of TABLE 8 when the stride is not 1. We conclude that using

quadloads with non-unit stride, in DCOPY at least, does not give optimal

results.

It might be interesting to consider the C routine bcopy. This routine

copies bytes and requires stride 1.

bcopy(Words Copied per Second)

Words/Sec

both in

cache

29.7

source in target in
cache cache

21.0 25.0

neither in

cache

20.9

TABLE I0

The performance varies from 480 MBS when data is in cache to 320 MBS,

significantly less than using DCOPY. If the bcopy routine loads the integer

registers, the best than can do is load two integer registers per clock. Since

the integer registers are 4 bytes wide, this would mean we are loading 8 bytes

per clock, or 540 MBS is the best we can do.

We next investigate the DAXPY loop. As before, we first consider the

case that can use quadload as in LOOP 7.

dolOOi= 1, n

100 y(i)=y(i) + a * x(i)

Loop 7

The results are given in TABLE 1 1.

12

FORTRAN DAXPY(MFLOPS)
Unit Stride

Both in cache
x in cache
y in cache
Neither in cache

Both
Aligned

161.3
78.6

107.8
78.5

X

Aligned

135.8

73.7

95.3

73.1

Y

Aligned

147.8

76.6

100.4

75.9

Neither

Aligned

120.3

71.1

99.9

71.0

TABLE 11

The performance varied from 161 MFLOPS to 71 MFLOPS. We have 3

operands for every 2 FLOPs. The performance is dominated by how fast we

can load and store operands, since we can load or store 2 operands in one

clock (for each fixed point unit) and complete 2 floating point operations (for

each floating point unit). Assuming we are using quadloads, operands are in

cache, and both fixed and floating point operation units are busy, one would

expect 4 FLOPs every 1.5 clocks. This gives a best possible performance of

178 MFLOPS when the operands are in cache. Our compiled code comes

surprisingly close to the best possible performance.

We next measured the performance for LooP 8.

j=l
k=l

dolOOi= l,n

y(k)-y(k)+a • x(j)

k = k + incy

100 j = j + incx

LOOP 8

In this loop we do not expect that the alignment would make a difference

since quadload instructions are not generated. There are instructions that

load and update pointers in one clock. Therefore the updating the pointers

should not affect the performance.

13

FORTRAN DAXPY (MFLOPS)

Variable Stride

Both vectors in cache

x in cache

y in cache
Neither vector cache

incx = 1

incy = 1

89.0

56.7

69.3

57.4

incx = 4

incy = 4

88.3

27.3

42.2

27.2

incx = 8

incy = 8

80.6

13.6

14.4

13.7

incx = 16

incy = 16

na

6.1

6.2

6.0

incx = 32

incy = 32

na

na

na

3.0

na: vector does not fit in cache for these strides

TABLE 12

If we compare the first column of TABLE 12 with the first column of TA-

BLE 11, we see that the using doubleloads instead of quadloads significantly

degrades performance at stride 1. When using doubleloads, we will require

3 clocks for every 4 FLOPS instead of 1.5 clocks when using quadloads.

The measurements are consistent with the calculations and reemphasize the

importance of the quadload instruction.

We also measured the performance obtained from the ESSL library. The

results are given in the following table.

Library DAXPY (MFLOPS)

incx= 1 incx=4 incx=8 incx- 16 incx--32

incy= 1 incy=4 incy=8 incy= 16 incy=32

Both vector in cache

x in cache

y in cache
Neither vector in cache

168.6

78.9

109.2

74.5

78.9

24.3

39.5

25.1

69.7

13.3

15.1

13.5

na

6.0

6.5

6.0

na

na

na

3.0

na: vector does not fit in cache for these strides

TABLE 13

Like the case of DCOPY, the first column in TABLE 13 is similar to the

first row in TABLE 1 1 which indicates that the DAXPY is coded using quad-

loads and quadstores. With nonunit stride the performance of FORTRAN

14

DAXPY is over 10 per cent greater than the ESSL version which can be seen

by comparing the first rows of TABLE 12 and TABLE 13.

4 Summary

The performance that users achieve from a computer depends on the hard-

ware and the compiler. The compiler seems to generates good code since the

performance of compiled DCOPY and DAXPY approached those of library

subroutines. However we suggest the following improvements be made:

The compiler should unroll loops like Loop 1 to give close to optimal

performance when using highest level of optimization. In TABLE 1 we

saw a factor of 4 performance between an unrolled and rolled loop.

While many scientific programmers are capable of unrolling loops, it

is not always easy to determine the optimal depth of unrolling. Also

code written for other machines may not be unrolled because it is not

needed for those architectures. Those codes may not run well on the

POWER2.

The library bcopy routine should make a runtime test on the vector

length and make a jump to code that uses, or does not use, the quadload

and quadstore instructions depending on vector length. It might be

worth while to make runtime tests for length and stride for SCOPY,

CCOPY, ZCOPY, SAXPY, etc. if they do not already do so.

The library routine DCOPY should incorporate a run time test of the

stride and jump to code that that uses, or does not use, the quadload

and quadstore instructions depending on the stride. There should be

a substantial improvement in performance when the data is in cache

and the stride is not one. This optimization was used in [4]. The Cray

compilers sometimes make a run time test on vector length, and use or

do not use vector instructions based on the vector length.

What is notable about the POWER2 system is that not only does it have

a high peak performance but that it can sustain a relatively high fraction of

the peak performance. This is because the architecture is well balanced and

the compiler is able to generate good code making use of some of the features

15

of the POWER2 . While it may be premature to predict the performance

on more complex loops, the sustained 600 MBS effective memory bandwidth

to memory with stride 1 is very encouraging. The relatively poor effective

memory bandwidth with large stride will mean that we must place greater

emphasis blocking the algorithms.

In the past performance has increased because of improvements in speed

and improvements in architecture. We can expect improvements in the speed

for the POWER2 to continue, especially as they reduce the number of chips

in the microprocessor. Improvements in architecture may be harder to im-

plement. There was a great improvement in performance when going from a

single floating point pipe to two floating point pipes and the quadload and

quadstore instructions. We should not expect equal improvement in perfor-

mance if we went to four floating point and fixed point pipes and octload

(load 4 double precision words) instructions, other factors being equal. This

is because it may be difficult to make a 4 accesses the TLB and cache tag

tables each clock, and to unroll a loop to the optimal depth because of in-

sufficient registers, Furthermore any stalls would for whatever reason would

cause 4 pipes, instead of 2 pipes, to stall. The Cray avoided these problems

with vector instructions.

ACKNOWLEDGEMENT: The author thanks Samuel Fineberg and William

Saphir for their careful reading of this paper and their editorial comments.

16

References

[1]Ramesh Argarwal and Fred Gustavson. Algorithm and Architecture As-

pects of Producing ESSL BLAS on POWER2, IBM Journal of Research

and Development. To appear.

[2] Troy Hicks, Richard Fry, and Paul Harvey. Power2 Fixed-Point, Data

Cache, and Storage Control Units, IBM Journal of Research and Devel-

opment. To appear.

[3] King Lee. On the Floating Point Performance of the i860 TM Micro-

processor, RNR-90-019, October, 1990. NAS, Ames Research Center,

Moffett Field, CA 94035.

[4] King Lee. The Performance of the lntel i860XP(tm), RND-94-001, Oc-

tober, September, 1993. NAS, Ames Research Center, Moffett Field, CA

94035.

[5] D. J. Shippy, T. W. Griffith, and G. Braceras. Power2 Fixed-Point,

Data Cache, and Storage Control Units, IBM Journal of Research and

Development. To appear.

[6] Stephan White and Sudhir Dhawan Power2: Next Generation of the

RISC System/6000 Family, IBM Journal of Research and Development.

To appear.

17

RND TECHNICAL REP ORT

Title:
Memory Bandwidth of the POWER2 Architecture

Author(s)"
King Lee

Clearance:
Form 427 has been filed with the division secretary. This report
is unclassified [_, /-" Author's initials.

Reviewers:

"I have carefully and thoroughly reviewed this technical report.

I have worked with the author(s) to ensure clarity of presentation

and technical accuracy. I take personal responsibility for the
quality of this document."/)/]

Signed: "%,-_f_h

Name:
/

Branch Chief:

Approved: _

Date and TR Number:

Au_u_t Iqq_l &_5 -q_t-ot3

Important: Put this form as the last page in the RND Report

